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Abstract

This paper considers a class of multivariable, nonlinear time-varying

feedback systems with an unstable convolution subsystem as fee4forward

and a time-varying nonlinear gain as feedback. The impulse response of the

convolution subsystem is the sum of i) a finite number of increasing expo-

nentials multiplied by nonnegative powers of the time t, ii) a term that

is absolutely integrable and iii) a infinite series of delayed impulses.

The main result of the paper is theorem 1. It essentially states that i)

if the unstable convolution subsystem can be stabilized by a constant

feedback gain F and ii) if the incremental gain of the difference between

the nonlinear gain function and F is sufficiently small, then the nonlinear

system is L -stable for any p C [l,-]; furthermore the -:olutions of the

nonlinear system depend continuously on the inputs in any LP-norm. The

fixed point theorem is crucial in deriving the above theorem.
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1. Introduction. In the past few years the L -stability [1], [2] the

L - stability [3], [4] of certain classes of nonlinear and time-varying

feedback systems have been extensively studied. Desoer and Wu [5], [6]

obtained LP-stability conditions for a broad class of linear time-invariant

feedback systems whose open-loop impulse responses may include an integra-

tion and an infinite series of delayed impulses. They also obtained LP-

stability conditions for a related class of nonlinear time-varying systems

in [7]. Recently Callier and Desoer [8], [9], [10] derived necessary and

sufficient conditions for stability of a very broad class of linear time-

invariant feedback systems whose open-loop impulse responses may include

increasing exponentials multiplied by nonnegative powers of time and an

infinite series of delayed impulses. These conditions imply LP-stability

for any p E [l,c], [6]. In this paper the loop transformation technique

[12], the fixed point theorem [16], and a generalized version of some re-

sults of Callier, Desoer and Wu [10], [7] are used to derive the LP-stability

for a related class of nonlinear time-varying feeiback systems which are

open-loop unstable. The application of the fixed point theorem in Lp shows

that the nonlinear feedback system has one and only one solution for any

pair of inputs in LP, that the solutions are continuously dependent on the

inputs and that closed loop system is LP-stable for any p E [1,-].

2. Notations. In this paper we shall encounter real numbers (elements of

8 ), vectors (in n), matrices (in Snxn), elements in function spaces and

operators acting on elements of function spaces. Lower-case letters denote

numbers or vectors, upper-case letters denote matrices. Bold-face letters

(indicated by a tilde under the symbol) denote operators. The symbol |'|

denotes both the magnitude of a number and the norm of a vector in Rn or a

matrix in ' nn. In function spaces, we use the following norms: Let

x: R+ _ Rn, then by definition
col/p

IxO - [0 Ix(t)I p dt] , 1< p <
p
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and, for p = ,

lxll - ess sup
t >O

Ix(t) I .

The resulting normed spaces are denoted by Lp, 1 < p < . (If n = 1 (scalar
n' -- --

case) we write LP.) When the symbols |'j and 11.11 are applied to a matrix

or a matrix-valued function or an operator acting on function spaces, they

denote the induced operator norms. Note that in defining the LP norms
n

above we may use any vector norm in An because all norms in RI are equiv-

alent. Following Sandberg [11] and Zames [2], the space LP , the extension
'~ne'

of LP space, is defined as follows:
n

T

Lp e {x(.)Af Ix(t)IP dt < a, VT E [0,), 1 < p < }
ne''

and

Ln - {x(.) ess sup
ne t E [,T]

t e [0,T]
Ix(t) < 0, VT E [0,o)}.

co
Roughly speaking, if x E Lne, then x does

In order to allow us to consider a larger

impulse responses may include an infinite

duce the Banach Algebra nxn (see [6]).

support is in [0,o). We say that A is an

not have a finite escape time.

class of linear subsystems whose

series of impulses, we intro-

Let A be a distribution whose

element of xnn ifelement ofa~ if

A(t) = Aa(t) + E Ai 6(t-ti)

i=0

where A :
a

tO = 0, ti

[0,) _ Rnx is in Lnxn, the sequence {ti} is in [0,0) with
nxn O f

> 0 for i > 1 and {Aii0  is a sequence of matrices in Rnxn- i i=0

co

subject to E jAil < - and 6 is the Dirac "function." The set of elements
i=O

,nxn
in a constitute a non-commutative Banach algebra with a unit, with the

usual definition for addition, the product defined by convolution, and the
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norm defined by

00 0

AlI a 0 IAa(t) Idt + IAi I

o i=O

These facts are well-known [6,15].

The symbol "^" over a function, such as f, denotes the Laplace transform

of f: it is defined by

f(s) j f(t) C-Stdt.

0

For distributions, it is defined according to L. Schwartz [13] or, by using

Stieltj es integrals, according to Widder [14]. The subscript T, as in fT'

denotes the truncation of the function f at time T, namely

f(t) for 0< t <_

fT(t) =
0 for t > T

Finally nxn denotes the algebra of Laplace transforms of elements in

anxn (with pointwise product).

3. System Description and Assumptions.

We consider a 2n-input 2n-output nonlinear time-varying feedback system

S as shown in Fig. 1. The inputs ul, u2, errors el, e2, outputs Y1, Y2

are functions of time mapping I + into R n. The block labeled ~ is a

memoryless, time-varying nonlinearity whose input-output relation is de-

fined in terms of a nonlinear function ~: jn x + _ Rn byx + b

y2(t) = %[e2(t),t]. (1)

The nonlinear function %( ,) satisfies the following assumptions:

(N.1) (..): 1 n x + + A-n and 4 is a continuous function with respect

to its first argument and is a regulated function (t ) with respect to its

() (xt): +n x I+ . n is called regulated in t iff for all fixed

x E gn, t ' ~(x,t) has finite one-sided limits at every t E +.
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second argument.

(N.2) There exists a nonsingular matrix F E Rnxn  and a positive real number

i such that

Is(x,t) - 4(x',t) - F(x-x')l < plx-x'I (2)

for all t E + and all x, x' E Pn; moreover

4(O,t) = 0 for all t E 9+. (3)

The block labeled G is a linear time-invariant subsystem whose input-output

relation is defined in terms of its impulse response matrix G by convolu-

tion, i.e.

Yl(t) = (G*el)(t) for all t E + (4)

G is a matrix valued distribution on [0,o) whose Laplace transform G satisfies

the assumption (G):

G(s) = (s-Pk) + (s) for Re s > 0 (5)
k=l a=0

where Re Pk > 0 for k = 1, 2, ..., k; the poles Pk and the coefficient

matrices Rk are either real or occur in complex conjugate pairs;

G (s) E nxn. The system equations are (1), (4) and
p

el u (6)el = U1 - Y2(6)

e2  u2 + Y1l' (7)

Definition: Let p E [1,o]; the system S (Fig. 1) defined by (1) - (7) is

said to be LP-stable iff the maps (ul,u2) + (el,e2 ) and (ul,u 2) H (y1,Y2)

are LP-stable i.e. to any input pair (ul,u2) belonging to LPn corresponds

an error pair (el,e 2 ) and an output pair (y1,Y2) both belonging to LP and

there is a number k EI+ such that

-5-
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1e pI + li e211 < k [11ull + 11lu u211 ]

/.E

1 P 2 p 1 p

y ; Y I + By211 < k [11lIu l + 11 U211 ]

for all (ul,u2) E LPn

4. Main Result.

Theorem 1. Consider the system S described by (1), (4), (6) and (7), where

the assumptions (G), (N.1) and (N.2) are satisfied. Let HF be the closed-

loop impulse response of the n-input n-output convolution feedback system

ul Y1 with G as open-loop impulse response and F as constant feedback

matrix, i.e.

HF = G[I+FG] 1. (8)

In (5) for k = 1, 2, ..., Q set

mk-1

fk (s) L Rk. (s-pk) (9)

a=O

At each pole Pk for k = 1, 2, ..., Q consider the Laurent expansion of

I + FG(s) up to and including the constant term. This proper rational

function can be represented as the product Nk(s) Dk(s)- where Nk and Dk

are right-coprime polynomial matrices [18-21], i.e. for k = 1, 2, ...,

Nk(s) Dk(s) = I + F[Rk(S) + R Ra(pk) + G (Pk)]. (10)

6=1
S0k

Under these conditions, if

inf Idet[I + FG(s)]l > 0 (11)
Re s > 0

det Nk(pk) $ 0 for k = 1, 2, ..., Q (12)
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and

IiHFIIap < 1 (13)

then,

(i) for any p E [1,'], the maps (ul,u2)t (el,e 2 ) and

(ul,u 2Y+ (y1,Y2) are well-defined maps sending LP into LPn;~ 2~+(yly22n o n

(ii) for any p E [1,0], these maps are uniformly continuous on LPn;

(iii) for any p E [1,0], the system S is LPstable.

5. Proof. To prove Theorem 1 we need two lemmas.

Lemma 1. Consider a special case of the system S (Fig. 1), where for all

e2 ER n, all t G R+, {(e2,t) = Fe2 , with F a nonsingular element

of nxn. Let the open-loop transfer function matrix G be defined by

(5). Let Nk and Dk be the right-coprime polynomial matrices defined by

(10). Under these conditions

I + ]-F 1 - nxn

and

~ G[i+FG] -l ~ ~nxnHF a [I+Fd], E G~

if and only if

inf Idet[I+FG(s)]l > 0 (11)
Re s > 0

and

det Nk(pk) 0 0 for k = 1, 2, ..., (12)

This is a generalized version of a result of [10].

Lemma 2. Consider a more general system than the one shown in Fig. 1, in

that G and ~ are replaced by H1 and H2 respectively. Let p be fixed and

p E [1,m]. Let H and H be nonanticipative maps of Lp  into
ne

L p . Let H be linear, thus H1 0 = 0. Let H20 = 0. Let el, e2 and ul u2
ne -b th -2~ 2 d

be defined by the system equations. Under these conditions if
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(a) for some F E n F nonsingular, (I+FH1) maps LP  into LP  and is
' m ~ ~ne ne

nonanticipative;

(b) there exists some positive real number p such that

(2e2) T  (H2e)T - F(e2 -e)T p < plle2T - e T I I- T'Y - pT 2

for all T E [0,c) and for all e2 e' E Lpe
.2 ne

(c) gHi(+FH l)-il < ;

(d) y = Hl(I+FH 1)-lp < 1,

then: (i) given any input pair (ulu in L e a unique error e in L
12 2ne 2 ne

is obtained by a fixed point iteration starting from an arbitrary point;

(ii) if u1 and u2 are the zero elements in Lnethen e2 is the zero element
ne'

inL p ;
ne

(iii) to any two input pairs, say (ul,u2), (ul,u) in L there corres-l'u2 1 2) 2ne,

pond two errors e and e' in 2 such that
2 2 The

ie2T - eTII < (l-y) -iF -(I+FH 1 ) -F(u 2T-uT)II +
2T 2T p-_l 2T2

I (I+FH)- (UlT-uT)Il VT E [0,)

Therefore the map (ulu 2) H e2 is a well-defined LP-stable map sending

ppLPn into Lp which is uniformly continuous on LP2n.2n n

This Lemma is a consequence of the loop transformation technique [12] and

the fixed point Theorem [16].

Proof of Theorem 1. Let F be the nonsingular nxn constant matrix of as-

sumption (N.2). Make the system transformation such that the block in the

forward path becomes

= G(I+FG) 1  (14)

-F - -8-
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and the block in the feedback path becomes

-FI. (15)

Let HF(s) be the transfer function matrix of HF, then

HF(S) = G(s)(I+FG(s)) (16)

By assumptions (11) and (12) of Theorem 1, Lemma 1 implies that (I+FG(s)) 1

and HF(s) are in nxn; since they are the transfer functions of the

operators (I+FG)-l and HF, these operators are nonanticipative, send Lp
_V n

into LP for any p E [1,w), and are LP-stable for all p E [1,c], [6]. Thus
n

the impulse response matrix HF is in a and is of the form

co

a(t) + E Hi6(t-ti) for t > 0

H (t ) + i i=O

F 0 for t < 0,

where H e L1 i ,th andwhere H E L ,the His are constant matrices such that i and
a nxn '2.

i=0
to = 0, ti > 0 for i > 1. Also HF has a well-defined norm in Cnxn

,~00

FH a | IHa (t )i d t + IHi..

0 i=O

Note that HFIIa is the induced operator norm when p = X and is an upper
Fa

bound on the induced operator norm when p # . By assumption (N.2) we have

( e2) T - ( 2e ) T - F(e2-e)TIp < e2TeT

for all T E [0,o), for all e2, e2 e L'e

Finally by assumption (13): IIHFI aP <.1; furthermore G is linear so

G 0 = 0 and, by assumption (N.2), 0 0=  . So all the conditions of

Lemma 2 are met for any p E [l,-]with Hl = G and H = ~. Hence, for any
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p E [1,0], it follows that for the system S the map (ul,u2) +- e2 is well

defined sending LP into L p, is LP-stable and is uniformly continuous on
i 2n n

SL2n .  Since Y2 =  e2'

(e2)T - (e )TII - IF(e2T-e 2T) <
~p p-

U(~e - (4)e') - (e -e' l < 1i le el

2 T ( 2)T F(e2T-e 2T),p < 2T 2T p

and 4 0 = 0,

it follows for any p E [1,o], that the map e2 t+ Y2 is a well-defined map

p p P
sending Lp into L which is LP-stable and uniformly continuous on Lp.

n n n

Finally since el = u1 - Y2 and Y1 = e2 - u2, the conclusion of the theorem

follows.

6. Final Remark. If, instead of assuming that 4 satisfies an incremental

gain condition as in (2) of assumption (N.2), we had assumed that there

exists a positive real number p such that

I0(x,t) - Fxj < pIxj for all t E 1R+, for all x E R n (2')

then we would be able to use the small gain theorem to prove the following:

suppose that for some p E [1,0] and for any input pair (ul,u2) E Lp  the
2 2n

error pair (el,e2 ) E LP ne,then assumptions (N.1), (2'), (3), (G) and (11),par 12 2ne

(12), (13) imply that system S is LP-stable. This result is easily obtained

by standard techniques [1], [2], [11] and extends a recent result of Prada

and Bickart [17]. Note that under the relaxed assumption (2') we do not

guarantee existence, nor uniqueness, nor continuous dependence.

7. Conclusion. We have shown that if the given nonlinear time-varying

feedback system S will be uniquely defined, stable and continuously depen-

dent on its inputs in any LP norm if eventually i) the unstable convolution

subsystem can be stabilized by a constant feedback gain F and ii) if the

incremental gain of the difference of the nonlinear gain function 4 and F

is sufficiently small.
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Fig. 1.7 The system S.
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